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The Prediction of Response of Solids to Thermal.

Loading Using the Finite Element Code AGGIE I

David H. Allen* and Walter E. Haisler**

ABSTRACT

In previous work the authors have proposed a theory for predicting

the response of elastic-plastic solids subjected to thermal loads. The

theory was cast in a finite element framework and has now been placed in

the finite element code AGGIE I. In this paper several example problems

will be compared to experimental and other theoretical results. It will

be shown that the model in its current form is adequate for modelling

the response of many solids composed of temperature dependent materials.

INTRODUCTION

In our latest two reports 1 ,2 we proposed a constitutive law for

predicting the response of elastic-plastic-creet materials to thermal

load histories. It will be recalled that the inct Aantal theory of

plasticity was used to obtain a constitutive law of the form

tC TdSj =Cjmn (dEn-dE -dE ) + dPij ,  (1)

where dS is the stress increment tensor,

C tmnis the effective modulus tensor,
* .~*iJmn
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dE is the total strain increment tensor,an

dEC is the creep strain increment tensor,
mn

dET  is the thermal strain increment tensor, and
Ma

dP is the stress increment tensor caused solely by a change in

material properties due to a temperature change during the load step.

The constitutive law employed the combined isotropic-kinematic hardening

rule in order to model the Bauschinger effect in metals during cyclic

loading. The resulting theory is similar in some respects to theories
3

proposed by others, most notably Snyder and Bathe, and Yamada and

Sakurai.

In our previous papers the constitutive law was also emplaced in

an incremental variational principle and the finite element method was

then used to discretize the equations of motion into a set of algebraic

equations. The resulting theory was then applied to the finite strain

finite element code AGGIE I. This code uses the two dimensional

isoparametric element proposed by Zienkiewicz 6 to model both material

and geometrically nonlinear response.

The purpose of this paper is to verify that the code is now in

operational form. This will be accomplished first by reviewing signif-

icant aspects of the code, and second by presenting the results of

several example problems. It will be shown that not only does the code

give quite accurate results in predicting many real world phenomena,

but that this theory is both correct and computationally superior to

that proposed by others. Finally, some significant shortcomings of the

theory will be exposed for further research.

2 r'J.



SIGNIFICANT ASPECTS OF THE CODE

There are several special cases encompassed withing equation (1).

These cases are distinguished by the nature of the response of the

medium as well as required input data and computation time. Accordingly,

we have constructed four separate material models within the code as a

means of affording maximum economy. The first model we have defined is

quasi-isothermal elastic, where quasi-isothermal is defined to mean that

the medium may undergo thermal loading, but that material properties are

not significantly altered due to the temperature change. Under these

conditions equation (1) reduces to

dSij = D (dE -dEC -dE ) (2)
ij ijmn mn mn mn

where D is the elastic constitutive tensor. Thie second model is
i jmn

named nonisothermal elastic and differs from model one in that the

thermal loading is such that material propertie must be considered

to be a function of temperature. In this case ejUVtion (1) reduces to

St+At C Et ECt ETt)

dS D (dE -dEC -dE T +dD (E -E -E ) (3)
ij ijmn mn mn mn ijmn mn mn mn

-: - t+Atwhere Dtjmn is the elastic constitutive tensor at the end of the load
ijmn

step, dDijmn is the increment in the elastic constitutive tensor during

the load step due to temperature change, and superscripts denote quantities

evaluated at the start of the load step. In the third model the material

is allowed to yield, but material properties are assumed to be independent

of temperature. This model is appropriately named quasi-isothermal

elastic-plastic, and equation (1) reduces under these assumptions to

3



dS Cijmn (dEmn -dE dE). (4)

The final model, called nonisothermal elastic-plastic, incorporates no

simplifying assumptions in the theory and accordingly is given by equation

(1). These four models comprise the temperature dependent modelling

capability of the code AGGIE I.

There are several nuances within the code which should be outlined

before proceeding with example problems. First, one will recall that in

order to solve the thermal stress problem one must characterize the temp-

erature distribution within the medium. In its present configuration the

code AGGIE I does not have this capability. It is assumed that the heat

transfer solution is known a priori. The temperature distribution is

input to the code by specifying nodal temperatures and utilizing the

serendipity functions employed in the isoparametric element to interpolate

within elements. It should also be pointed out that although creep can

be predicted utilizing an uncoupled creep strain term, the emphasis in

this paper will be on plasticity and thermal effects. Thus, most example

problems included herein will have negligible creep.

The required input material data will depend on the model being used.

For example, for the nonisothermal elastic-plastic model it is necessary

to input a set of isothermal stress-strain curves at varying temperatures,

as well as curves giving Poisson's ratio and the coefficient of thermal

2expansion as well as functions of temperature.

EXAMPLE PROBLEMS

The example problems included herein have been chosen primarily

as verification of each of the different models within the code AGGIE I.

4
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hc object of these examples is threefold in nature: (1) to ,erify l,,

accuracy of the constitutive theory for modelling some nonlinear phenomena,

(2) to support the claim that the constitutive theory has been correctly

emplaced in the finite element code AGGIE I, and (3) to familiarize

potential code users with the modelling capability of AGGIE I. These

examples are presented here in ascending order of complexity.

I. Pseudo-Isothermal Static Elastic Circular Disk with Radial Temperature

Variation

The first problem is that of a circular disk which undergoes a radial

temperature change as shown in Figure 1. The temperature change is assumed

to be small enough that response is elastic and material properties are

not temperature dependent. The problem is solved in a single step using

the two dimensional isoparametric element mesh shown in Figure 1. Although

this problem may be solved more efficiently with an axisymmetric theory, the

analysis is performed here assuming plane stress (Figure 2) and plane

strain (Figure 3) conditions. Shown in the figi-es are comparisons for

the radial displacement v, the radial normal stre Cerr, and the circum-

ferential normal or hoop stress a00. In the figures it is seen that the

results obtained in AGGIE I agree quite will with the theoretical solution

reported by Boley and Weiner.7 This is intended to verify the supposition

that the pseudo-isothermal elastic constitutive law within the code is

correct for plane stress and plane strain analysis.

II. Pseudo-Isothermal Static Elastic Axisymmetric Shell with Slow Heat

Input

In the second problem the spherical cap shown in Figure 4 is subjected

to an internal pressure of 100 PSI and a slowly applied heat input on the

outer surface such that the temperature on the outer surface is 1000 F with

5
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Figure 1. Geometry and Input Data for Example One
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a linear through thickness variation to 0°F on the inner surface. The

problem has been solved using axisymmetric analysis with the finite

element grid shown in Figure 4. The resulting vertical (w) and horizontal

(v) deflections are plotted in Figure 5 and compared to results obtained

with the shell codes SAMMSOR8 and SNASOR.9  It is seen that good agree-

ment is obtained between the analyses, and thus it is assumed that the

code gives accurate results when using axisymmetric analysis in conjunction

with the elastic pseudo-isothermal constitutive law.

III. Pseudo-Isothermal Dynamic Elastic Cantilever Beam with Rapid Heat

Input

In this example the simply supported elastic beam shown in Figure 6

undergoes free vibration when subjected to a rapidly applied heat input

on the upper surface. The heat transfer problem is assumed to be uncoupled

from the deformation analysis, and thus the temperature distribution has

7
been obtained from Boley and Weiner. Using dynamic analysis and the

finite element mesh shown in Figure 6 the neutral axis deflection at

the center of the beam has been determined and compared to the theoretical

analysis obtained by Boley and Weiner 7 in Figure 7. In addition, the

3
results shown herein have been obtained by Snyder and Bathe. It is

seen that the dynamic capability of the program is confirmed for this

material law.

IV. Nonisothermal Elastic Axial Bar Subjected to Simultaneous Mechanical

Load and Heat Input

The fourth example demonstrates the capability of the code to predict

the static response of elastic materials with strongly temperature dependent

material properties to simultaneous mechanical and thermal loading. A

significant factor in the accuracy of the theory is the correct deter-

10
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mination of the thermal strain increment during a nonisothermal load

step. To support this statement a theoretical discussion will be

included in this example and this theory will be verified by experi-

mental verification.

First, consider the elastic stress increment equation, which has

been previously determined I to be represented by equation (3)

dS = t+At (dE - dET ) + dD (Et - ETt (5)
i ijmn mnmn nE mn mn )

In order to determine the correct definition of dET in this equation,
mn

consider a uniaxial case with no creep. Equation (3) thus reduces to

do = Et+ A t (dcd T ) + dE (f T Tt (6)

where C is the uniaxial stress, c is the uniaxial strain, and E is the

elastic modulus.

Next, the strength of materials solution is examined for two

separate bars constructed from the same material, with properties as

shown in Figure 8. Both bars are initially set at a reference state

of zero load and zero temperature. The loading histories for bars one

and two are shown in Figure 9. The axial strain in bar number one can

be found from strength of materials theory to be

1-6 10001 xAT + 10 x 10 x 100 + .002. (7)i rt =  aA + ...10 7

Similarly, the axial strain in bar number two is determined to be

2 AT 0- 100

C 2 aAT + 20Fx20 O_ ! x 200 + 10000 .006. (8)
2 5 x 106

14
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Next, bar number one is subjected to the WidiLional loading history

shown in Figure 10. Since for elastic action the loading history must

be path independent, it is seen that the axial strain in bar number one

must now be identical to that in bar number two. Thus, the strain

increment predicted in bar nimber one for the time increment from t

to t2 must be the difference in the total strains determined in equations

(7) and (8), or .004 in/in. Hence, in order to be correct, equation

(7) must predict this result.

Suppose one assumes that the thermal strain increment is given by

dET = at+ A t (T t2-T t) = 20 x 10- 6 x 100 = .002. (9)

Then, noting that the stress increment is zero, equation (6) gives

0 = 5000000 (dc-.002) + (-5000000) (.002-.001)-

5000000d=.02+5000000 (.002-.001) = .003. (10)

The above prediction is obviously in error. Thi error can be traced

to the thermal strain increment determined in equz "n (9). Suppose

on recalculates the thermal strain increment assuming

T t+At t
dc= a (T t2-T R- (T t-T R )

= 20 x 10- 6 (200-0) - 10 x 10- 6 (100-0) f .003. (11)

a

For the above predicted thermal strain increment equation (6) gives

0 = 5000000 (dc-.003) + (-5000000) (.002-.001)

= .03 +5000000
de .003 + 5000000 (.002-.001) = .004, (12)

which is the correct increment. To better see how the error is incurred

________17
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by itsing the former definition, consider the latter definitic., given

by equation (11)

dcT, at+At (Tt2_TR a t (T tITR)

W at+At (Tt2-Tt 1 + (a t+At a t) (TtI-TR). (13)

The first term in equation (13) is the thermal strain increment

predicted by equation (9), and the second term therefore represents

the error incurred by using equation (9). Mathematically, equation

(13) may be interpreted as representing a chain rule differentiation.

Physically, the last term can be better understood by considering an

example. Consider a uniaxial bar subjected to an initial thermal and

mechanical load. Now suppose that some process can be performed on the

bar such that the coefficient of thermal expression can be altered

without changing the temperature. Then the bar will undergo an

additional expansion given by the second term i., equation (13). It

can be seen that the error incurred by neglecting his term will

depend on how strongly alpha depends on temperature. It should not

be assumed that because this term is small for a particular load step

that it may be neglected. Rather, the entire load history should be

considered. If there is a significant variation in the coefficient of

thermal expansion for the range of temperatures expected, this term

should not be neglected.

To illustrate the error which may be incurred by utilizing equation

(10) to define the thermal strain increment, the code is now compared

to experimental data. An aluminum (6061-T6) axial bar with material

properties as shown in Figure 11 is subjected to the load history shown

K. - - .19
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in Figure 12. Due to the relatively short t ii ,oeriod, cr,!ep strain

is assumed to be negligible. Analytical axial strain calculations are

compared to experiment in Figure 12. Experimental results as well as

10
the theoretical result denoted CREEPARHS are due to Stone. Three

solutions were performed in AGGIE I using a single plane stress isopara-

metric element and twenty-six load steps. In the first analysis it is

assumed that material properties are not temperature dependent and

room temperature data are used. In the second solution, properties

are assumed to vary with temperature, and the definition of the thermal

strain increment given by equation (9) is used. Finally, the third

analysis employs temperature dependent material properties as well as

the definition of the thermal strain increment given in equation (11).

It is found that all theoretical results except the last are in error

by approximately ten percent or more. Thus, the importance of tempera-

ture dependent material properties as well as a correct definition

of the thermal strain increment are illustrated *,y this example problem.

V. Quasi-Isothermal Elastic-Plastic Annular Dis 'ubjected to Radial

Temperature Variation

In this example problem the annular disk shown in Figure 13 is

subjected to a heat input producing a static temperature distribution

given by

T = Ta - (Tb - T a ) log (r/a) /log (b/a), (14)

where Tb is the temperature at the outer surface and Ta is the

temperature at the inner surface. It is found that under this

loading condition the material yields, thus requiring an elastic-

plastic constitutive theory. For this anlysis the uniaxial stress-

21
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strain data and finite element mesh shown in Figure 13 were used. A

theoretical solution to this problem has been obtained by Dastidar and

11 12
Ghosh, and duplicated by Levy. We have solved this problem using

both the quasi-isothermal elastic-plastic and the nonisothermal elastic-

plastic models in AGGIE I. In the second model it was assumed that the

material exhibited identical uniaxial stress-strain behavior at various

temperatures, thus reproducing the results obtained in the quasi-isothermal.

The purpose of this example problem is twofold. First, it is shown in

Figure 14 that the quasi-isothermal elastic-plastic theory within AGGIE

I produces results for radial stress (a r) and hoop stress (o) which are

identical to those obtained by others. I11 1 2 Second, it is noted here

that utilizing the quasi-thermal constitutive model in AGGIE I gave a

computational time saving of approximately 4.5% when compared to the

nonisothermal theory. Therefore, it is concluded that the use of

simplified theories when material properties of the medium are essen-

tially temperature independent can be efficient nd should be included

as separate models within the computer codes.

VI. Nonisothermal Elastic-Plastic Axial Bar

This test case demonstrates the capability of the code to predict

the response of media near their ultimate strength. As a part of this

ability it is necessary to properly predict the structural response in

the transition range from elastic to elastic-plastic behavior. A method

for predicting isothermal behavior in the transition range has been

13
previously proposed by Krieg and Duffey. Although their approach

may not be used during nonisothermal transitions, it can be modified

to obtain correct results. This method will be presented here along

p23
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with a verifying example.

First recall that an assumed stress increment tensor (dS i) is

obtained using the predicted strain increment tensor dEij and assuming

elastic behavior, i.e.,

dS.. =D..' (dE -dE -dE )
1j ijmn mn mn mn

+ dD.. (Et -E Ct_ Tt 
(15)

ijinn mn mn mn

where the quantities above are as previously defined. This supposed

stress increment tensor is then added to the stress state at the start

of the step and the sum is used to check for plastic flow via the yield

condition. '
2 If no yielding occurs the predicted stress increment is

correct. However, if the yield condition is satisfied, one must first

determine that portion of the stress and strain to the initial yield

surface.

To obtain the stress increment tensor necessary to cause yield,

recall that the yield function is utilized, i.e.,

I I I I ^ 1 ' 2 t+At 2

(Si + rdSij - ij ) (Sij + dS. i  - ia j .. ('i i < yJ~=3C , (16)

t+A t
where a.. is the yield surface translation tensor, o denotes that

ii y

the yield surface size is temperature dependent, primes indicate

deviatoric components, and :,dS.. is the stress increment tensor necessary

to cause yielding. In this respect the method proposed by Krieg and

Duffey is correct. Recall that one determines r by using

-B + 2A ' (17)

26
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where
A = dSij dSij

B = 2 (Sij - cij ) dS ij and (18)

' ' ' 2 t+At2
C = (S.. - eI ) (S t ) tA 2

Iij 'i ii i 3 y

In order to find the strain increment tensor necessary to cause

yielding, the isothermal theory must be modified. To do this, first

note that since the material behaves elastically up to yield, the

following relation must be satisfied:

t t+At et e (19)(S. + rdS ) D (Ee + jidE (19ij ij ijmn mn mn

where P is a scalar which when multiplied by the predicted elastic strain

eincrement dE n, will cause yielding, and the superscript e denotes elastic

strain components. Solving equation (19) for p and setting the free

indeces i and j equal to unity yields.

t t+At et
S 11+ 1 - Dllmn mn

D t+At de (20)
ilkl dkl

Sincet t Eet (21)

1 llmn mn

equations (20) and (21) may be combined to obtain
tdS 1l - dDlm Eet

11 Ilmnmn
S= (22)

t+At 'e
D llkl dkl

Thus, after obtaining r from equation (17) one can find ji in equation

(22) and the resulting strain increment tensor necessary to cause yielding

from

y
dEC = ijdE e  (23)mn mn

27
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Tho method in equation (23) may be better understood by considering a

uniaxial case, as shown in Figure 15. For a one dimensional stress

state equation (20) reduces to

t t+At eto + Cda - E

t+At de (24)
E d

where o is the uniaxial stress, c is the uniaxial strain, and E is the

elastic modulus. For convenience the thermal and creep strains are

removed from the graph in Figure 15 so that on the ordinate it is found

that

t t+At et t+At e

•d (25)

Solving the above equation for v gives equation (24) so that the theory

is verified for the uniaxial case.

In order to complete the constitutive law for the transition step

from elastic to plastic action it is next necessary to determine the

portion of the strain increment occurring after yield. This amount

is given by

d p = (I-) dE (26)
ij ij

Now again considering Figure 15, it is seen that since the state of

stress and strain have been advanced to the stress-strain curve for

the temperature at the end of the step, one need only calculate the
~ep
isothermal portion of the stress increment caused by dEij. In other

words, in the transition step the term dPij may be dropped from equation

(1). Due to the determination of the stress increment necessary to cause

yielding this final step will yield correct results.

It is interesting to note that equation (1) may be used without

29



modification if a different formulation for C is used. In fact, dSij

may be used as the stress increment necessary to cause yielding if

equation (1) is used to predict the stress increment after yield.

This method has not been used here for two reasons. First, it is

obviously computationally efficient to circumvent the calculation of

dPij due to its complexity. Second, and more importantly, the

uniaxial thermal stress rate (da/dt) necessary to calculate dP.. cannot1]

be determined below the yield point because the computer code AGGIE I

does not save this information. For other reasons which are apparent

from examination of references I and 2, the code carries only data

relating uniaxial stress to plastic strain.

The above method may now be applied to an example experimental

problem. In this example an axial bar with isothermal material properties

shown in Figure 16 is subjected to the load history shown in the same

figure. Attempts at verification of this problem have failed due to

the fact that the relatively long heat-up time required with the equip-

ment at this institution induces significant creep. Additional equip-

ment is on order and it is hoped that experimental verification will be

forthcoming in the near future. This example is included not as a

verification of the theory, but rather as a corroboration of the computa-

tional efficiency of the model.

One will recall that in our previous papers 1 2 we proposed that

to obtain the effective modulus tensor C for a load step one should
ijmn1

use the elastic constitutive tensor D. jmn at the end of the load step.

This was shown to be mathematically correct and is computationally

supported by this example. In the example, an axial bar is loaded

30
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isothermally to some plastic state and is then simultaneously subjected

to a mechanical load and spacially constant slow heat input. According

to the classical incremental theory of plasticity it is required that

the state of stress and strain move to a point on the uniaxial stress-

strain diagram for the temperature at the end of the step. This require-

ment must be satisfied in order to remain consistent with the yield

surface during plastic loading. Using the elastic modulus proposed by

us the theory will predict this result exactly. If one utilizes the

elastic modulus at the start of the load step the state of stress and

strain will converge incorrectly to a point denoted by the head of the

dashed line in Figure 16. This point corresponds to a horizontal trans-

t t
lation from (c , ax ) to the stress-strain curve at the temperature at

the end of the step, followed by a translation parallel to the stress-

strain curve at time t. Thus, utilizing the elastic modulus at the start

of a load step does not satisfy the consistency condition. Further, if

one employs equilibrium iteration and correctly updates the elastic

modulus during the iteration procedure, the solution will converge to

the correct solution, but in exactly twice the computation time encountered

in our theory. Therefore, it is suggested that using the elastic

constitutive tensor at the end of the step is not only consistent but

also computationally efficient.

VII. Nonisothermal Elastic-Plastic Axial Bar with Significant Creep

This test case demonstrates the capability of the code to predict

the response of media near their ultimate strength. As was pointed out

in references I and 2, a part of this ability rests upon properly pre-

dicting the structural response in the transition range from elastic to
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elastic-plastic behavior. To demonstrate this capability, an aluminum

(6061-T6) uniaxial bar with isothermal material properties shown in

Figure 11 is subjected to the load hi'tory shown in Figure 17, such that

ultimate failure of the specimen occurs. Experimental and CREEPARHS

10
results for axial strain are due to Stone. Two analyses were performed

using AGGIE I. In the first, creep is assumed to be negligible. In

the second, linear interpolation of isothermal creep data at a load of

20 KSI is used. It is seen from results plotted in Figure 17 that the

theory produces accurate results even near the ultimate strength of the

material.

VIII. Nonisothermal Elastic-Plastic Thick Walled Cylinder

In this problem an axisymmetric cylinder with material properties

and geometry shown in Figure 18 is subjected to the thermomechanical

load history shown in the same figure. Residual radial stresses and

displacements at time t = 10 are shown in Figure 19, indicating that

results obtained in AGGIE I are comparable to t1 se obtained in ADINA.
3

This example was chosen because the author has bec insuccessful in

obtaining documented experimental results of bodies subjected to thermo-

mechanical loadings producing spacially variable multiaxial stress states.

It is to be noted that the model in ADINA does not account for combined

hardening during cyclic loading, and thus represents a special case of

the model proposed herein.

IX. History Dependent Uniaxial Thermomechanical Loadings

Although no experimental results are available for this example,

it serves to illustrate the capability of the theory to model history

dependent phenomena. In the analysis, four identical uniaxial bars

with isothermal material data as shown in Figure 20 and initially at
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zero load and temperature are subjected to the thermomechanical loadings

shown in Figures 21 and 22. It is noted that the peak thermomechanical

load in each case is identical. Results of the theory are shown in

Figure 23, wherein it is seen that the model does in fact predict signifi-

cantly different residual strains.

X. Nonisothermal Elastic-Plastic Axial Bar Subjected to Cyclic Load

Histories

One of the primary purposes of this research has been to obtain

a theory which can effectively model the response of elastic-plastic

media to cyclic mechanical and thermal loading. Although the literature

contains abundant verification tools for isothermal cyclic loading histories,

the author has been unable to obtain experimental data to verify the

nonisothermal problem. Therefore, certain experiments have been undertaken

to perform certain nonisothermal tests using axial bars on the MTS

system. Although results of these experiments are incomplete at this

time, analytical results of a cyclic test are presented herein. Although

the theory is capable of modelling creep response, this study is meant

to verify the time independent behavior of the material. Therefore,

the uniaxial test case shown in Figure 24 has been chosen. Note that

the specimen is heated at zero load after prestrain so that no creep

occurs. This problem thus tests the expansion and translation of the

yield surface in stress space caused by a temperature change. In order

to verify the applicability of the theory it is necessary to perform

three material data tests. Isothermal stress-strain curves are generated

at room temperature and 2000 F. In addition, an isothermal cyclic load

test is performed to determine the ratio of isotropic to kinematic

hardening (V) used in the model. Theoretical results are presented in
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Figure 25 where it should be noted that the times ti correspond to

those shown in the load history curve in Figure 24. It is seen that the

combined hardening model (tc) with a = .5 produces results which differ

significantly from both kinematic (t ) and isotropic (tI) nonisothermal

hardening theory as well as isothermal isotropic hardening theory at

time t4, indicated by the dashed line in Figure 25.

In order to better understand the genesis of the yield surface for

the various workhardening rules, the yield surface is diagramed for the

various workhardening rules in Figures 26 through 28. Note again that

the times ti in these figures correspond to those shown in Figure 24.

The arrows shown along the a 1 axis in each diagram represent the path of

the stress state during the uniaxial loading. Careful inspection of

these diagrams will show that although all temperature dependent yield

surface modification is isotropic (producing concentric yield surfaces),

the choice of hardening rule will significantly affect the point of

reyield in compression.

CONCLUSION

The theory previously proposed by us has been shown in this report

to be adequate in predicting response of many solid media. In addition,

it has been shown that certain computationally simplified forms of the

theory are correctly in place in the computer code AGGIE I. It has also

been shown that the theory may be inadequate in modelling certain physical

phenomena. Among these are rate dependence, instability near ultimate

strength, finite stress and strain, phase changes, and violation of

other assumptions in the theory such as the normality condition. Research

is currently underway to incorporate the above additions to the theory.
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